
Shortest Paths in Acyclic Graphs

So far we have been trying to be very general
with our graph algorithms, proceeding from
graphs with no weights to graphs with only non-
negative weights to graphs with any edge
weights, positive or negative. The algorithms
have become increasingly expensive as they
became more general.

Here we back away from generality and give an
algorithm that doesn't work for all graphs, but
where it does work is efficient and simple to
implement.

Suppose our graph has no cycles. This means it
has a topological sort -- an ordering of the nodes
consistent with the edges of the graph. Now
consider what would happen if we processed
the nodes of the graph in the order given by a
topological sort.

By the time we process a node, we would have
already processed every node that has a path
leading to it. This means we would have
considered every path to this node and will
know the cheapest path from the source to it,
regardless of whether the weights are positive
or negative.

Remember the topological sort algorithm. We can use
any structure we wish to maintain a WorkingSet. We
start this set with all nodes that have no incoming
edges. We know an acyclic directed graph must have at
least one such node.

One at a time, we remove node X from the WorkingSet.
We delete its outgoing edges and add to the working
set any unprocessed node that now has no incoming
edges. This continues until the queue empties. If
some of the nodes of the graph have not been
processed it must have a cycle.

We don't want to destroy our graph, so instead
of deleting edges we store in each node an
incoming edge count and decrement this each
time the algorithm says we should delete an
edge. When a node's incoming edge count is
zero we add it t the WorkingSet.

For our shortest path algorithm we will use a
simple linked-list queue for the WorkingSet, as it
gives us constant-time insert and remove
operations. We start the algorithms by walking
through the edges of the graph to build the
incoming edge count values and then to add to
the queue any nodes with 0 incoming edges.

We give every node a cost, which initially is
INFINITY for every node except the source node,
which gets cost 0.

We take nodes out of the queue one at a
time, walk through their outgoing edges
and decrement the edge counts of each of
the nodes at the end of their outgoing
edges. Any node whose edge count
becomes 0 is added to the queue.

This much is just the usual topological sort
algorithm. We now add information that
gets us the shortest path from a source
node S.

Suppose we remove node X from the queue,
and X has cost c, which is less than INFINITY. If
there is an edge from X to Y with weight w, we
compare Y's current cost with c+w. If c+w is
smaller, we make Y's current cost c+w and
make X Y's predecessor.

By the time Y goes into the queue, every
possible path from the source to Y will have
been examined, so Y's cost estimate will be the
minimum cost from the source to Y.

A

B C

D

F G

4

2

101 3

-2

5 8

1

4

2

1

E

For example, consider the following graph.

One possible topological ordering of the
nodes is
A B C D E G F

Let's find the minimum cost paths from A to
each node.

A

B C

D

F G

4

2

101 3

-2

5 8

1

4

2

1

E

Node A has cost 0. When it comes out of the queue we
give costs to its adjacent nodes, B, D, and F:

A B C D E G F
0 4 -2 5

Next B comes out of the queue. Its cost of 4 is frozen.
We give C a cost of 6. We don't change the cost of D
because the path to D through B is more expensive.

A

B C

D

F G

4

2

101 3

-2

5 8

1

4

2

1

E

A B C D E G F
0 4 6 -2 5

C is the next node to come out of the queue, giving a
cost of 16 to E.

A B C D E G F
0 4 6 -2 16 5

When D comes out of the queue we update the costs of
E and G:

A B C D E G F
0 4 6 -2 0 2 5

A

B C

D

F G

4

2

101 3

-2

5 8

1

4

2

1

E

E gives a path of cost 1 to G; G gives a path of cost 2 to F.
Our final costs are

A B C D E G F
0 4 6 -2 0 1 2

How long does this take? We walk along every
edge; every step is constant time. Our
algorithm runs in time O(|E|). Note how much
better this is than our negative-weight
algorithm. This handles positive and negative
weights, though it will not handle any graph for
which there is a cycle.

